The Role of Cyclic Nucleotides in Pituitary Lactotroph Functions
نویسندگان
چکیده
Lactotrophs are one of the five secretory anterior pituitary cell types specialized to synthesize and release prolactin. In vitro, these cells fire action potentials (APs) spontaneously and the accompanied Ca(2+) transients are of sufficient amplitude to keep the exocytotic pathway, the transcription of prolactin gene, and de novo hormone synthesis continuously active. Basal cyclic nucleotide production is also substantial in cultured cells but not critical for the APs secretion/transcription coupling in lactotrophs. However, elevated intracellular cAMP levels enhance the excitability of lactotrophs by stimulating the depolarizing non-selective cationic hyperpolarization-activated cyclic nucleotide-regulated and background channels, whereas cGMP inhibits it by activating Ca(2+)-controlled K(+) channels. Elevated cAMP also modulates prolactin release downstream of Ca(2+) influx by changing the kinetic of secretory pores: stimulate at low and inhibit at high concentrations. Induction of prolactin gene and lactotroph proliferation is also stimulated by elevated cAMP through protein kinase A. Together, these observations suggest that in lactotrophs cAMP exhibits complex regulatory effects on voltage-gated Ca(2+) influx and Ca(2+)-dependent cellular processes.
منابع مشابه
cAMP-specific PDE4 phosphodiesterases and AIP in the pathogenesis of pituitary tumors.
PDE4 cyclic nucleotide phosphodiesterases regulate cAMP abundance in cells and therefore regulate numerous processes, including cell growth and differentiation. The rat PDE4A5 isoform (human homolog PDE4A4) interacts with the AIP protein (also called XAP2 or ARA-9). Germline mutations in AIP occur in approximately 20% of patients with Familial Isolated Pituitary Adenoma (FIPA) and 20% of childh...
متن کاملInvolvement of cAMP response element-binding protein in the regulation of cell proliferation and the prolactin promoter of lactotrophs in primary culture.
Hypothalamic hormones, including dopamine, regulate critical functions of pituitary cells via the cAMP-protein kinase A (PKA) pathway. The PKA-downstream transcription factor cAMP response element (CRE)-binding protein (CREB) is an integrating molecule that is also activated by many other protein kinase pathways. We investigated the involvement of CREB in the regulation of cell proliferation an...
متن کاملCYCLIC NUCLEOTIDES CONTROL DIFFERENTIATION OF HUMAN MONOCYTES INTO EITHER HIGHLY ACCESSORY CELLS OR MACROPHAGES
Human peripheral blood monocytes have been found to undergo a transitory state of high accessory activity before they fully become macrophages. Time kinetics were done to follow this accessory potential. Studying the regulation of accessory activity, we have found that monocyte derived accessory cells (m-AC) pass through two phases of development, both of which are adversely controlled by ...
متن کاملAutocrine/paracrine action of pituitary vasoactive intestinal peptide on lactotroph hyperplasia induced by estrogen.
Vasoactive intestinal polypeptide (VIP) content is increased in the hyperplastic pituitaries of estrogen (E)-treated rats, thus suggesting that this neuropeptide could mediate the E effect on lactotrophs. E also decreases pituitary TGF-beta1 content, an autocrine/paracrine inhibitor of lactotroph proliferation, and induces pituitary angiogenesis. To elucidate the role of VIP in this context, la...
متن کاملAntiproliferative Role of Dopamine: Loss of D2 Receptors Causes Hormonal Dysfunction and Pituitary Hyperplasia
The function of dopamine (DA) in the nervous system is paralleled by its neuroendocrine control of pituitary gland functions. Here, we document the neuroendocrine function of dopamine by studying the pituitary gland of mice lacking DA D2 receptors (D2R). These mice present a striking, progressive increase in lactotroph number, which ultimately leads to tumors in aged animals. Females develop tu...
متن کامل